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Abstract

In this paper we consider two predator-prey models with a two-staged
pest (prey) and its biocontroller (predator). In one model, the predator only
eats the immature pest, while in the other the predator only eats the mature
pest. We discuss the existence and global stability of the equilibria of these
models. Each model had a trivial and a positive equilibrium, one of which
must be globally asymptotically stable. Then we consider dispersal of both
the pest and its biocontroller between two patches. We find that the pop-
ulation dispersal may significantly change the dynamics of the populations
in the sense that oscillation behaviors may occur in the two-patch model for
certain dispersal rates. In particular, we find that the dispersal rates of the
mature prey in the first and second patches affect whether the population
densities converge to an equilibrium or oscillate.

Keywords— predator-prey, stage-structured, pest, biocontroller, single patch, two patch,

oscillation

1 Introduction

Pests pose a significant problem in areas such as agriculture and conservation [6].
There are many ways to deal with pests, including the use of pesticides. However,
it is sometimes necessary to consider ways to remove pests without the use of
pesticides. It could be that overuse of pesticides has rendered them useless against
the pest, as in [1], or that the use of chemical agents and the labor associated with
applying it is too expensive, as in [11]. One way to do this is to introduce a predator
in order to curb the pest population. In other words, applying a biocontrol to the
pest. In that case, it will be necessary to know how the populations will behave
when introduced to one another. In particular, before introducing a predator, it is
desirable to know if the result will be the extinction of the predator and the pest,
if they will coexist at some stable point, or if the predator will outlive the pest
and potentially become its own pest. The efficacy of a biocontrol in controlling a
pest has been the subject of several papers, including [11], [2], [7]. For examples of
biocontrol predators that become pests, see [9], [3].

The first mathematical consideration of a predator-prey system was done by
Lotka-Volterra [5]. This model was based on four key assumptions: the prey always
has enough food, the predator depends entirely on the prey for food, a population’s
rate of change is directly proportionate to its size, and there is no significant en-
vironmental change. Since then, many researchers have investigated alterations to
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the Lotka-Volterra Model depending on their needs. Notable among these is the
consideration of a stage-structured prey, as investigated in Shi and Chen’s paper
[8]. A predator may prefer a juvenile population of pest to an adult one or vice
versa, based on the ability of the pest to fight back. For example, in [1], the au-
thors investigated the habits of a predator in choosing the stage of its target prey.
In practical circumstances, prey may be able to disperse between patches of an
environment. Tang, Cheke and Xiao consider the effects of dispersal on a predator-
prey relationship without a stage structure [10]. They find that different ranges of
dispersal rates affect whether populations become extinct in both patches, become
extinct in one patch, or persist in both patches, indicating that dispersal rates have
a significant impact on the behavior of the models.

The effects of the stage-structure of pests and dispersal of both populations
present the question this line of research aims to investigate. This paper is intended
to build towards a model that considers both the effects of the stage-structure of
pests and dispersal of both populations among two patches. To start, we investigate
two one-patch models, one with the biocontrol attacking the immature stage of the
pest and one with the biocontrol attacking the mature stage of the pest. The
purpose of examining both of these models is to see if there is a qualitative or
quantitative difference between the behavior of the populations depending on where
the biocontrol is applied. When the models are extended to two patches, we have
six equations, making it harder to analyze, so we present numerical simulations to
show that dispersal rates do affect the behavior of the populations.

This paper is organized as follows: in section 2 we discuss the single patch
models and their dynamics, while in section 3 we discuss the two patch model. In
section 2.1 we present the single patch models, followed by an analytical discussion
of the dynamics of their equilibria in section 2.2. In section 2.3 we present a
numerical simulation of our models based on the life tables of carmine spider mites
[4] and the predation habits of Allothrombium Pulvinum [1] in Matlab to justify
our results. In section 3.1 we present the two patch model. We then reuse the
criterion for our single patch simulation to run a numerical simulation for the two
patch model in order to investigate the effects of our new parameters. We conclude
with a discussion of our results that compares the behavior of the one patch models
with what we discovered about the behavior of the two patch model.
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2 Single-Patch Models and their Dynamics

2.1 Models

In the following, we introduce models that describe the dynamics of the pest and
its bio-controller (predator) in a single patch.

Model 1: the biocontrol is on the immature stage of the pest; the predator only
eats juvenile pests, with the dynamics governed by:

dx1

dt
= rx2 − µx1 − δx1 − cx1y,

dx2

dt
= δx1 − βx2,

dy
dt

= kcx1y − dy,
(1)

where x1, x2, and y are the densities of the immature pests, mature pests, and the
predator, respectively, r is the intrinsic growth rate of the pest, µ is the death rate
of the immature pests, δ is the graduation rate of immature pests to mature pests,
c is the predation rate of pests by predators, β is the death rate of the mature
pests, k is the conversion rate of the predator, d is the death rate of the predator.

Model 2: the biocontrol is on the mature stage of the pest; the predator only
eats adult pests, with the dynamics governed by:

dx1

dt
= rx2 − µx1 − δx1,

dx2

dt
= δx1 − βx2 − cx2y,

dy
dt

= kcx2y − dy,
(2)

where the parameters have the same meaning as those in model 1.

2.2 Equilibria and Stability

Model 1 admits the equilibria

E10 = (0, 0, 0) and

E11 =

(
d

kc
,

δ

β
· d

kc
,

1

c

[
rδ

β
− (µ+ δ)

])
.

Lemma 1.1
The following statements are valid:

(i) E10 is locally asymptotically stable if rδ < β(µ+ δ).

(ii) E11 is positive and locally asymptotically stable if rδ > β(µ+ δ).
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Proof
(i) The Jacobian matrix for E10 is

J(E10) =

−µ− δ r 0
δ −β 0
0 0 −d

 .

This has the following characteristic equation:

(−d− λ)[(−µ− δ − λ)(−β)− rδ] = (−d− λ) · det(A10 − λI)

where

A10 =

[
−µ− δ r

δ −β

]
.

Then J(E10) has an eigenvalue λ = −d and the eigenvalues of A10. Since d > 0,
−d < 0. Then, in order for the eigenvalues of J(E10) to all have negative real parts,
the eigenvalues of A10 must all have negative real parts. The conditions for this to
be true can be determined from the trace and determinant of A10:

tr(A10) = −µ− δ − β < 0,

det(A10) = β(µ+ δ)− rδ > 0 when rδ < β(µ+ δ).

So E10 is asymptotically stable when rδ < β(µ+ δ).
(ii) The Jacobian matrix for E11 is

J(E11) =

−µ− δ − cy r − d
k

δ −β 0
kcy 0 0

 .

where y = 1
c

[
rδ
β
− (µ+ δ)

]
as in the expression for E11. This has the following

characteristic equation:

−λ3 − λ2(β + δ + µ+ cy)− λ[dcy + β(µ+ δ + cy)− rδ]− βdcy = 0.

We will use the Routh-Hurwitz criteria to determine when the solutions to this
equation have negative real parts. To do this, we put the characteristic equation in
the form P (λ) = λn+a1λ

n−1+ · · ·+an−1λ+an. So we have the following equation

λ3 + (β + δ + µ+ cy)λ2 + [dcy + β(µ+ δ + cy)− rδ] + βdcy = 0
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with

a1 = β + µ+ δ + cy = β +
rδ

β
,

a2 = dcy + β(µ+ δ + cy)− rδ = d

[
rδ

β
− (µ+ δ)

]
, and

a3 = βdcy = βd

[
rδ

β
− (µ+ δ)

]
.

The final expressions for a1, a2, a3 are obtained by substituting in our expression
for y.

The first Routh-Hurwitz matrix H1 = [a1] has determinant det(H1) = a1 =
β + rδ

β
which is positive by definition. Then our condition for stability comes from

the second Routh-Hurwitz matrix:

H2 =

[
β + rδ

β
1

βd
[
rδ
β
+ (µ+ δ)

]
d
[
rδ
β
− (µ+ δ)

]] ,
det(H2) =

rδd

β

[
rδ

β
− (µ+ δ)

]
> 0 when rδ > β(µ+ δ).

Then all the eigenvalues of J(E11) have negative real parts if rδ > β(µ + δ). The
conditions for which E11 is positive can be derived directly from the expression for
E11. □

From this Lemma, we see that if there is no positive equilibrium point, the triv-
ial equilibrium point is locally asymptotically stable and that when the positive
equilibrium point exists, it is locally asymptotically stable, and the trivial equilib-
rium is unstable.

Before we continue our analysis, it is useful to know something about the be-
havior of our model given non-negative initial conditions.

Lemma 1.2
The solution of model 1 is non-negative if the initial conditions are non-negative.

Proof
Suppose the immature pest population becomes zero: i.e., x1 = 0. Then

dx1

dt
= rx2 ≥ 0 when x2 ≥ 0
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Then the immature pest population can only stay non-negative if the mature pest
population stays non-negative.

Now suppose the mature pest population becomes zero: i.e., x2 = 0. Then

dx2

dt
= δx1 ≥ 0 when x1 ≥ 1

Then the mature pest population can only stay non-negative if the immature pest
population stays non-negative.

Thus, if we have positive initial conditions, neither x1 nor x2 can ever become
negative.

Lastly, suppose the predator population becomes zero: i.e., y = 0. Then

dy

dt
= 0 ≥ 0.

Then y will always be zero once it becomes zero.
Then, given positive initial conditions, the solution of the model will always

stay non-negative. □

Now that we know the conditions for local asymptotic stability for E10 and E11,
we will go on to discuss the global stability of E10 and E11.

Theorem 1.1
For model 1, the following statements are valid.

(i) E10 is globally asymptotically stable for all non-negative initial conditions if rδ < β(µ+ δ).

(ii) E11 is globally asymptotically stable for all positive initial conditions if rδ > β(µ+ δ).

Proof
(i) We will use LaSalle’s Invariance Principle to determine the global stability for
each equilibrium point. We’ll do this by attempting to construct a strict Lyapunov
function for each of the equilibria. We will check that each function satisfies the
following conditions:

Vij(Eij) = 0, (3)

Vij(X) > 0 when X ̸= Eij, (4)
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V ′
ij(X) = ∇⃗Vij · fi(X) ≤ 0, (5)

Vij(X) → ∞ as d(Eij, X) → ∞, (6)

where X = (x1, x2, y) ∈ R3
+, i = 1, 2 as an index denotes the model under investi-

gation, fi(X) is the set of differential equations defining model i, and j = 0, 1 as
an index denotes the extinction and persistence equilibria, respectively. When con-
ditions (3)-(6) are satisfied, the equilibrium is globally stable. When the stronger
form of condition (5)—V ′

ij(X) < 0 for X ̸= Eij—holds, the equilibrium point is
globally asymptotically stable.

Let

V10(x1, x2, y) = x1 +
r

β
x2 +

1

k
y.

Note that V10(E10) = V10(0, 0, 0) = 0 satisfies condition (3). Assume x1, x2, y ≥ 0.
Then, if (x1, x2, y) ̸= E10, it must be that one of x1, x2 and y is greater than zero,
so V10(x1, x2, y) > 0, so V10 satisfies condition (4).

Now we calculate V ′
10(X).

V ′
10(X) = ∇⃗V10(X) · f1(X)

= (x̂1 +
r

β
x̂2 +

1

k
ŷ) · [(rx2 − µx1 − δx1 − cx1y)x̂1 + (δx1 − βx2)x̂2 + (kcx1y − dy)ŷ]

= y[
1

k
(kcx1 − d)− cx1] + x1[δ(

r

β
− 1)− µ] + x2(r −

r

β
)

= −dy + x1(
δr

β
− µ− δ)

≤ 0 if rδ < β(µ+ δ).

Note that V ′
10(X) is equal to zero only for the full solution X = E10, so V10 satisfies

condition (5).

Our function also satisfies condition (6); since, as d(E10, X) → ∞, V10(X) → ∞.

Thus, by the LaSalle Invariance Principle, when rδ < β(µ+ δ), E10 is globally
asymptotically stable for all non-negative initial conditions. That is, if E10 is locally
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asymptotically stable, it is also globally asymptotically stable for all non-negative
initial conditions.

(ii) Let

V11(X) =

∫ x1

x∗
1

q − x∗
1

q
dq +

r

β

∫ x2

x∗
2

ξ − x∗
2

ξ
dξ +

1

k

∫ y

y∗

ζ − y∗

ζ
dζ

where x∗
1 = d

kc
, x∗

2 = δ
β
· d
kc
, y∗ = 1

c
[ rδ
β
− (µ + δ)] as in E11. Note that V11(E11) =

V11(x
∗
1, x

∗
2, y

∗) = 0, so V11 satisfies condition (3). Assume x1, x2, y ≥ 0. Now, if
X ̸= E11, then some xi is either greater or less than x∗

i .

If xi < x∗
i , then, for xi < qi < x∗

i ,
qi−x∗

i

qi
≤ 0. So∫ x∗

i

xi

qi − x∗
i

qi
dqi < 0 and thus

∫ xi

x∗
i

qi − x∗
i

qi
dqi = −

∫ x∗
i

xi

qi − x∗
i

qi
dqi > 0.

If xi > x∗
i , then, for x

∗
i < qi < xi,

qi−x∗
i

qi
≥ 0. So∫ xi

x∗
i

qi − x∗
i

qi
dqi > 0.

Since all of our coefficients are greater than zero, if X ̸= E11, it must be that
V11(X) > 0, so V11 satisfies condition (4).

Now we calculate V ′
11(X).

V ′
11(X) =∇⃗V11(X) · f1(X)

=

[
x1 − x∗

1

x1

x̂1 +
r

β
· x2 − x∗

2

x2

x̂2 +
1

k
· y − y∗

y
ŷ

]
·

[(rx2 − µx1 − δx1 − cx1y)x̂1 + (δx1 − βx2)x̂2 + (kcx1y − dy)ŷ]

=
rd

kc

[
2
δ

β
−

(
x2

x1

+
δ2

β2

x1

x2

)]
.

Notate x = x2

x1
and c = δ

β
. Then

2
δ

β
−

(
x2

x1

+
δ2

β2

x1

x2

)
= 2c− x− c2

x
.
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If we multiply this expression by x, which is always positive, we have

2cx− x2 − c2 = −(x− c)2.

Since (x − c)2 is a square, it must always be non-negative. Then −(x − c)2 must
always be non-positive. Then V ′

11(X) ≤ 0 and is only equal to zero when x2 =
δ
β
x1.

If we plug this into our system of equations for model 1,

dx2

dt
= δx1 − βx2 = δx1 − β · δ

β
x2 = 0.

Then x2 is a constant. Since x2 is proportional to x1, x1 must also be a constant.
That is,

dx1

dt
= rx2 − µx1 − δx2 − cx1y = 0.

In order for this equation to hold, y must also be a constant. Then V ′
11(X) is only

equal to zero for an equilibrium point of model 1. It cannot be the origin equilib-
rium, since V11(X) is not defined there. So V ′

11(X) = 0 only for the full persistence
solution X = E11, satisfying condition (5).

Our function also satisfies condition (6); as d(E11, X) → ∞, V11(X) → ∞.

Then, by the LaSalle Invariance Principle, when E11 exists, it is globally asymp-
totically stable for all positive initial conditions. That is, when E11 is locally
asymptotically stable, it is also globally asymptotically stable for all positive initial
conditions. □

We now move on to discuss model 2. Model 2 admits the equilibria

E20 = (0, 0, 0) and

E21 =

(
rd

kc(µ+ δ)
,

d

kc
,

1

c

(
rδ

(µ+ δ)
− β

))
.

Lemma 2.1
The following statements are valid:

(i) E20 is locally asymptotically stable if rδ < β(µ+ δ).

(ii) E21 is positive and locally asymptotically stable if rδ > β(µ+ δ).

Proof
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(i) The Jacobian matrix for E20 is

J(E20) =

−µ− δ r 0
δ −β 0
0 0 −δ

 .

This has the following characteristic equation:

(−d− λ)[(−µ− δ − λ)(−β − λ)− rδ] = (−d− λ)[det(A20 − λI)],

where

A20 =

[
−µ− δ r

δ −β

]
.

Then J(E20) has an eigenvalue λ = −d and the eigenvalues of A20. d < 0 by
defintion, meaning −d < 0, so in order for the eigenvalues of J(E20) to all have
negative real parts, the eigenvalues of A20 must all have negative real parts. We
can determine the conditions for this to be true from the trace and determinant of
A20:

tr(A20) = −µ− δ − β < 0,

det(A20) = β(µ+ δ)− rδ > 0 when rδ < β(µ+ δ).

So E20 is asymptotically stable when rδ < β(µ+ δ).

(ii) The Jacobian matrix for E21 is

J(E21) =

−µ− δ r 0
δ −β − cy − d

k

0 kcy 0


where y = 1

c

(
rδ

(µ+δ)
− β

)
as defined in the expression for E21. This has the following

characteristic equation:

−λ3 − (β + δ + µ+ cy)λ2 + [dcy + (β + cy)(µ+ δ)− rδ]λ+ dcy(µ+ δ)

We will use the Routh-Hurwitz criteria to determine when all the solutions of this
equation have negative real parts. In order to do this, we must put the characteristic
equation in the form P (λ) = λn+a1λ

n−1+· · · an−1λ+an. This gives us the following
equation:
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λ3 + (β + δ + µ+ cy)λ2 + [dcy + (β + cy)(µ+ δ)− rδ]λ+ dcy(µ+ δ) = 0

with

a1 = β + δ + µ+ cy = (µ+ δ) +
rδ

µ+ δ

a2 = dcy + (β + cy)(µ+ δ)− rδ = d

(
rδ

(µ+ δ)
− β

)
a3 = dcy(µ+ δ) = (µ+ δ) · d

(
rδ

(µ+ δ)
− β

)
The final expressions for a1, a2, a3 are obtained by substituting in our expression
for y.

The first Routh-Hurwitz matrix H1 = [a1] has determinant det(H1) = a1 =
(µ + δ) + rδ

(µ+δ)
which is positive by definition. Then our condition for stability

comes from the second Routh-Hurwitz matrix.

H2 =

[
(µ+ δ) + rδ

(µ+δ)
1

(µ+ δ) · d
(

rδ
(µ+δ)

− β
)

d
(

rδ
(µ+δ)

− β
)]

det(H2) =
rδd

(µ+ δ)

(
rδ

(µ+ δ)
− β

)
> 0 when rδ > β(µ+ δ)

Then all the eigenvalues of J(E21) have negative real parts if rδ > β(µ + δ). The
condition for which E21 is non-negative can be derived directly from the expression
for E21. □

We see from this Lemma that if there is no positive equilibrium point, the triv-
ial equilibrium point is stable and that when the positive equilibrium exists, it is
locally asymptotically stable, and the trivial equilibrium is unstable.

We would like to establish for model 2 what we have established earlier for
model 1 regarding the behavior of the populations of the model given non-negative
initial conditions.

Lemma 2.2
The solution of model 2 is non-negative if the initial conditions are non-negative.
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Proof
Suppose the immature pest population becomes zero: i.e., x1 = 0. Then

dx1

dt
= rx2 ≥ 0 when x2 ≥ 0

Then x1 only stays non-negative if x2 stays non-negative.
Suppose the mature pest population becomes zero: i.e., x2 = 0. Then

dx2

dt
= δx1 ≥ 0 when x1 ≥ 0

Note that, as in the case with the immature population, x2 only stays non-negative
if x1 stays non-negative. Then, if we begin with non-negative initial conditions,
both populations stay non-negative.

Suppose the predator population becomes zero: i.e., y = 0 Then

dy

dt
= 0

So the predator population can never become less than zero.
Then, given non-negative initial conditions, the populations of the model never

become negative. □

Now that we know the conditions for the local asymptotic stability of E20 and
E21, we will go on to discuss the global stability of E20 and E21.

Theorem 2.1
Here we present the conditions for global stability for model 2.

(i) E20 is globally asymptotically stable for all non-negative initial conditions if rδ < β(µ+ δ)

(ii) E21 is globally asymptotically stable for all positive initial conditions if rδ > β(µ+ δ).

Proof
(i) Let

V20(X) = x1 + (
µ

δ
+ 1)(x2 +

1

k
y).

Note that V20(E20) = V20(0, 0, 0) = 0, satisfying condition (3). Assume x1, x2, y ≥
0. Then, if X ̸= E20, it must be that one of x1, x2 and y is greater than zero, so
V20(X) > 0, satisfying condition (4).
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Now we calculate V ′
20(X).

V ′
20(X) = ∇⃗V20(X) · f2(X)

= [x̂1 + (
µ

δ
+ 1)x̂2 +

1

k
(
µ

δ
+ 1)ŷ] · [(rx2 − µx1 − δx1)x̂1 + (δx1 − βx2 − cx2y)x̂2 + (kcx2y − dy)ŷ]

= [r − β(
µ

δ
+ 1)]x2 −

d

k
(
µ

δ
+ 1)y

≤ 0 if rδ < β(µ+ δ)

Note that V ′
20(X) = 0 only for the full solution X = E20, so V20 satisfies condition

(5).

Our function also satisfies condition (6); as d(E20, X) → ∞, V20(X) → ∞.

Thus, by the LaSalle Invariance Principle, when rδ < β(µ+ δ), E20 is globally
asymptotically stable for all non-negative initial conditions. That is, if E20 is locally
asymptotically stable, it is also globally asymptotically stable for all non-negative
initial conditions.

(ii) Let

V21(X) =

∫ x1

x∗
1

q − x∗
1

q
dq +

µ+ δ

δ

∫ x2

x∗
2

ξ − x∗
2

ξ
dξ +

µ+ δ

kδ

∫ y

y∗

ζ − y∗

ζ
dζ.

where x∗
1 = rd

kc(µ+δ)
, x∗

2 = d
kc
, and y∗ = 1

c

(
rδ

(µ+δ)
− β

)
. Note that V21(E21) = 0,

satisfying condition (3). By the logic used for V11(X), V21(X) > 0 for X ̸= E21,
satisfying condition (4).

Now we calculate V ′
21(X).

V ′
21(X) = ∇⃗V21(X) · f2(X)

= −r
rd

kc(µ+ δ)

x2

x1

+
rd

kc
− (µ+ δ)

d

kc

x1

x2

+
µ+ δ

kδ
d
1

c
(

rδ

µ+ δ
− β)

=
2rd

kc
− r2d

kc(µ+ δ)

x2

x1

− (µ+ δ)d

kc

x1

x2
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We then use the inequality a2 + b2 ≥ 2ab (and thus −a2 − b2 ≤ −2ab) to claim

− r2d

kc(µ+ δ)

x2

x1

− (µ+ δ)d

kc

x1

x2

≤ −2

√
r2d

kc(µ+ δ)
· (µ+ δ)d

kc
= −2rd

kc
,

meaning V ′
21 ≤ 0∀X fulfilling condition (5). In particular, V ′

21 = 0 if x1

x2
= r

µ+δ
.

Then we can write x1 = r
µ+δ

x2 and substitute this into F2(X). This gives the
equation

dx1

dt
= rx2 −

r

µ+ δ
x2 − δ

r

µ+ δ
x2 = 0,

meaning x1 is a constant. Since x2 must be proportional to x1, x2 must also be a
constant. Then it must be true that

dx2

dt
= δx1 − βx2 − cx2y = 0.

This equation holds when y = 1
c
( rδ
µ+δ

+ β) = y∗. Then we are left with the last

equation of F2(X), which must be equal to zero since we see that y is a constant.
This makes x2 =

d
kc

= x∗
2. Applying the required relation between x1 and x2 gives

us x1 =
rd

kc(µ+δ)
= x∗

1. Then V ′
21(X) = 0 if and only if X = E21.

Our function also satisfies condition (6); as d(E21, X) → ∞, V21(X) → ∞.

Then, by the LaSalle Invariance Principle, when E21 exists, it is globally asymp-
totically stable. That is, when E21 is locally asymptotically stable, it is also globally
asymptotically stable for all positive initial conditions. □

2.3 Case Study

We would like to apply our model to a specific case, with Allothrombium pulvinum
as a biocontroller for the spider mite pest. Spider mites are a considerable pest
to many agricultural crops [1], but overuse of pesticides during World War II ren-
dered them ineffective against spider mites [4]. The predatory mite Allothrombium
pulvinum is known to prey on the spider mite, with its preferences recorded in
[1]. We use this paper to provide the predation parameter in our model for the
simulation. Information on the life tables of the carmine spider mite (Tetranychus
cinnabarinis) was readily available for us to use in the paper [4]. While this is not
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the same spider mite that is preyed upon by Allothrombium pulvinum in the paper
[1], (that spider mite being Tetranychus urticae), we considered the mites to be
nearly related enough to justify the use of the complete and readily available life
tables in [4]. The spider mite has more four life stages: egg, larvae, protonymph
and deutonymph. Since our model only accounts for two life stages, the egg and
larvae stages were grouped together as the immature stage of the pest and the
protonymph and deutonymph stages were grouped together as the mature stage of
the pest. We used the Matlab command ode45 to simulate our models.

The life tables of the Carmine spider mite are grouped by temperature in degrees
Celsius and relative humidity. The percent of spider mites that die between stages
is listed in the table. We chose the percentage of deaths after the larvae stage
to be the value of the immature pest death parameter µ, depending on whether
we wanted to display the extinction behavior of the models or the coexistence
behavior. A similar process was used to find the mature pest death parameter
β. The graduation parameter was based on the percent of pests surviving the
larvae stage. Again, values under different temperatures and relative humidity
were chosen based on whether we wanted the model to display extinction behavior
or coexistence behavior. The predation parameter was obtained from [?] based
on the information that Allothrombium pulvinum consumed 3.66 eggs out of 20
available within a 24 hour period. The rest of the parameters were invented to
be on a similar scale to the others and fulfill the conditions for global asymptotic
stability for either the trivial or positive equilibrium.

We summarize the parameters used in our simulation and their origins in Table
1 and Table 2. In fact, the parameters in Table 1 lead to extinction of both the
pests and their predators. The parameters in Table 2 lead to the persistence of
both the pests and their predators.
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Table 1

Table 2

The initial conditions for the extinction cases were meant to approximate the
conditions used in the paper [1]. To see the persistence phenomenon, we chose
initial conditions near the positive equilibrium.

Results - Extinction Case

We take parameters in table 1 for model 1 and model 2. The parameters satisfy
the relation rδ < β(µ+ δ). By Theorems 1.1 and 2.1, there is no positive equilibria
for either model and the zero solution is globally asymptotically stable. Thus, both
populations die out for both models.
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Figure 1: The solutions of model 1 and model 2 with initial conditions: (x1, x2, y) =
(224, 172, 87), Equilibria: E10 = E20 = (0, 0, 0), Run Time: 2, 000 days. Parameters
given in Table 1.

The differences in population change are difficult to see on the scale of 2, 000
days for the immature and predator populations, so I re-scaled the graphs to show
the difference between models one and two. In particular, I show the predator
population between 40 and 100 days rather than the full length of simulated time,
and I show the immature pest population for the first 500 days rather than the full
simulated time (2, 000 days).
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Figure 2: Predator and Immature Pest Populations on the periods 40 to 100 days
and 0 to 500 days, respectively.

S
The models are asymptotically appraoching the equilibrium at the origin. It

appears that model 2 is the more efficient method. Although the immature pop-
ulation in model 1 appears to reach extinction before model 2, it plateaus a bit
before reaching zero, and by the time model 1 rests at zero, model 2 has already
reached zero.

Results - Persistence Case
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Figure 3: The solutions of model 1 and model 2 with initial conditions:
(x1, x2, y) = (30, 525, 2), Equilibria: E11 = (49.453, 793, 317, 1.4968), E21 =
(4.077, 49.453, 0.0846), Run time: 10, 000 days. Parameters given in Table 2.

We see that the solution of model 1 reaches the equilibrium point much faster
than the solution of model 2, which oscillates as it approaches equilibrium. Both
models asymptotically approach their positive equilibria, as predicted. However,
the densities of the matured and immature pest populations in the equilibrium of
model 1 is much larger than in model 2. Thus, biocontrol on the adults (model
2) lowers the total pest population density more significantly than biocontrol on
juveniles (model 1).
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3 Two-Patch Model

3.1 Models

In this section we assume that the predator and the prey can disperse between two
patches and consider two-patch models. We first introduce the two-patch model
where in each patch the predator only eats the juvenile prey.

dx1

dt
= r1x2 − µ1x1 − δ1x1 − c1x1y − a1x1 + b1X1,

dx2

dt
= δ1x1 − β1x2 − a2x2 + b2X2,

dy
dt

= k1c1x1y − d1y − a3y + b3Y,
dX1

dt
= r2X2 − µ2X1 − δ2X1 − c2X1Y + a1x1 − b1X1,

dX2

dt
= δ2X1 − β2X2 + a2x2 − b2X2,

dY
dt

= k2c2X1Y − d2Y + a3y − b3Y.

(7)

In this model, the variables mean the same things as they did in the single
patch models, with subscripts 1 and 2 indicating which patch they describe. The
parameters a1, a2, a3 are the dispersal rates of the immature pest, mature pest,
and predator populations, respectively, in patch 1, while b1, b2, b3 are the dispersal
rates of the immature pest, mature pest, and predator populations, respectively, in
patch 2. We introduce new variables in this model, X1, X2, and Y , which indicate
the immature pest, mature pest, and predator populations in the second patch.

In the following, we intend to find the equilibria of this model and the local and
global stability conditions for those equilibria, using computer programming as an
aid. In the meantime, we used Matlab to simulate the long-term behavior of this
model.

We assume that in one patch, all populations will die out, i.e., the zero solution
is globally asymptotically stable, while in the other patch, all populations will co-
exist, i.e., the positive equilibria is globally asymptotically stable. Thus, one patch
was assigned the parameters that lead to extinction from Table 1, while the other
was assigned the parameters that lead to persistence from Table 2. The initial
conditions for each test were (x1, x2, y,X1, X2, Y ) = (4, 49, 1, 4, 49, 1) to show long-
term behavior.

In order to investigate how dispersal rates affect population dynamics in the
two-patch model, the dispersion parameters were changed one at a time, with the
rest being kept as constants. We present the results of this investigation for each
dispersal rate in the next section.

20



3.2 Case Study

Effect of Dispersal Rate a1
We first consider the effects of the dispersal of juveniles from patch 1 to patch

2, i.e., a1. Figures 4-6 were obtained by setting all the dispersal rates to 0.1 with
the exception of a1. The value of a1 is chosen as 0.6,0.9.

Figure 4: The solution of model 7. Parameters: a1 = 0.6, a2 = a3 = b1 = b2 = b3 =
0.1. Other parameters in patch 1 are from Table 1 and in patch 2 are from Table
2. Run Time: 1,000 days

We see what appears to be a cyclical solution, where both stages of pest and
predator repeatedly arrive at the same populations. We increase the run time to
1,000,000 to check that this is the case.
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Figure 5: The solution of model 7. Parameters: a1 = 0.6, a2 = a3 = b1 = b2 = b3 =
0.1. Other parameters in patch 1 are from Table 1 and in patch 2 are from Table
2. Run Time: 1,000,000 days

While it may be that this is approaching an equilibrium by slightly damped
oscillations, it seems to be displaying a periodic solution.

In the next set of figures, we see the result of setting a1 equal to 0.90.

22



Figure 6: The solution of model 7. Parameters: a1 = 0.9, a2 = a3 = b1 = b2 = b3 =
0.1. Other parameters in patch 1 are from Table 1 and in patch 2 are from Table
2. Run Time: 1,000,000

Thus, changing the value of a1 may decide whether the solution asymptotically
reaches some equilibrium or a periodic solution.

Effect of Dispersal Rate a2
Now we consider the effects of the dispersal of the adult population from patch

1 to patch 2, i.e., a2. Set a2 to 0.12. The solutions of model 7 are shown in Figures
7 and 8.
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Figure 7: The solution of model 7. Parameters: a2 = 0.12, a1 = a3 = b1 = b2 =
b3 = 0.1. Other parameters in patch 1 are from Table 1 and in patch 2 are from
Table 2. Run Time: 10,000 days

The predator population drops to zero fairly quickly. It is difficult to see over
this shorter period how the pest populations behave, so we include simulations
over a longer run time of 500,000 days to show that they slowly approach some
equilibrium point; see Figure 8.
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Figure 8: Immature and Mature Pest Populations over 500,000 day period, a2 =
0.12

However, if we set a2 to be a very large value, like 0.99, we get clearly oscillatory
behavior over the shorter period of 10,000 days. See Figure 9. We wanted to see if
the oscillatory behavior changed over the long term, but Matlab would not run the
program for longer the specified length 50, 000 days, killing Matlab instead. The
behavior remained the same for a simulated run time of 40,000 days, though, with
oscillating behavior diverging over time.
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Figure 9: The solution of model 7. Parameters: a2 = 0.99, a1 = a3 = b1 = b2 =
b3 = 0.1. Other parameters in patch 1 are from Table 1 and in patch 2 are from
Table 2. Run Time: 10,000 days
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Figure 10: The solution of model 7. Parameters: a2 = 0.99, a1 = a3 = b1 = b2 =
b3 = 0.1. Other parameters in patch 1 are from Table 1 and in patch 2 are from
Table 2. Run Time: 40,000 days

Effect of Dispersal Rate a3
Then we vary the dispersal rate of the predator from patch 1 to patch 2, but

observe that changing a3 had no obvious effect on the behavior of our model for
certain values of a3. To illustrate this, we show the behavior of our model for
a3 = 0.01 and a3 = 0.99 in Figures 11 and 12, run for a simulated time of 10,000
days. We see that in both cases the solutions approaches the zero solution as time
becomes large.
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Figure 11: The solution of model 7. Parameters: a3 = 0.01, a1 = a2 = b1 = b2 =
b3 = 0.1. Other parameters in patch 1 are from Table 1 and in patch 2 are from
Table 2. Run Time: 10,000 days
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Figure 12: The solution of model 7. Parameters: a3 = 0.99, a1 = a2 = b1 = b2 =
b3 = 0.1. Other parameters in patch 1 are from Table 1 and in patch 2 are from
Table 2. Run Time: 10,000 days

Effect of Dispersal Rate b1
When we vary the dispersal rate b1, we see that the model approaches extinction

both when b1 is small and when it is large. The values chosen are again b1 = 0.01,
b1 = 0.99, run for a simulated time of 10,000 days. See Figures 13-14.
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Figure 13: The solution of model 7. Parameters: b1 = 0.01, a1 = a2 = a3 = b2 =
b3 = 0.1. Other parameters in patch 1 are from Table 1 and in patch 2 are from
Table 2. Run Time: 10,000 days
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Figure 14: The solution of model 7. Parameters: b1 = 0.99, a1 = a2 = a3 = b2 =
b3 = 0.1. Other parameters in patch 1 are from Table 1 and in patch 2 are from
Table 2. Run Time: 10,000 days

Effect of Dispersal Rate b2
Changing the dispersal rate b2 has a similar effect to changing the dispersal rate

a2, except that the divergent oscillatory behavior is exhibited when b2 is very small
rather than very large. In Figure 15, b2 has been set to 0.01 and the simulation
was allowed to run for a period of 10,000 days. We attempted to carry the simu-
lation on farther, to make sure that the behavior didn’t change, but Matlab was
killed automatically after trying to run the time period 40,000 days. However, the
behavior did not change for a simulated run time of 30,000 days, still showing the
populations diverging. See Figure 16.
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Figure 15: The solution of model 7. Parameters: b2 = 0.01, a1 = a2 = a3 = b1 =
b3 = 0.1. Other parameters in patch 1 are from Table 1 and in patch 2 are from
Table 2. Run Time: 10,000 days
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Figure 16: The solution of model 7. Parameters: b2 = 0.01, a1 = a2 = a3 = b1 =
b3 = 0.1. Other parameters in patch 1 are from Table 1 and in patch 2 are from
Table 2. Run Time: 30,000 days

In contrast, when b2 is set to a larger value, like 0.5, all populations drop off to
extinction quickly. See Figure 17.
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Figure 17: The solution of model 7. Parameters: b2 = 0.5, a1 = a2 = a3 = b1 =
b3 = 0.1. Other parameters in patch 1 are from Table 1 and in patch 2 are from
Table 2. Run Time: 10,000 days

Effect of Dispersal Rate b3
Last, we vary the dispersal rate b3 and find that changing the dispersal rate b3

does not appear to alter the behavior of the model and results in the extinction
of all populations. We again display b3 = 0.01 and b3 = 0.99 as evidence, with a
simulated run time of 10,000 days. See Figures 18 and 19.
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Figure 18: The solution of model 7. Parameters: b3 = 0.01, a1 = a2 = a3 = b1 =
b2 = 0.1. Other parameters in patch 1 are from Table 1 and in patch 2 are from
Table 2. Run Time: 10,000 days
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Figure 19: The solution of model 7. Parameters: b3 = 0.99, a1 = a2 = a3 = b1 =
b2 = 0.1. Other parameters in patch 1 are from Table 1 and in patch 2 are from
Table 2. Run Time: 10,000 days

4 Discussion

In this work, we considered some models for a two-stage pest and its biocontroller,
both in a single patch and in two patches. We considered that the biocontroller
can be applied on the immature pests or on the mature pests.

In the single patch models, we find that the trivial or positive equilibrium is
always globally asymptotically stable. However, we found that applying the bio-
control meant extinction was achieved match faster than model 1 when extinction
was globally asymptotically stable and achieved a lower coexistence equilibrium
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than model 1 when coexistence was globally asymptotically stable. Then, for a
two-stage pest in a single patch, applying biocontrol to the mature stage is more
effective.

When both the pest and its biocontroller can disperse between two patches, we
consider a model where biocontrol is applied to the immature population. This
shows populations can oscillate between two patches, which is very different from
the behavior of the single patch models.

We apply our model to the species Allothrombium pulvinum and Tetranychus
cinnabarinis as a biocontroller and a pest, respectively. Our results show that
applying the biocontroller to the mature stage is a more effective form of biocontrol
than applying the biocontroller to the immature stage.

We hope to provide a better analysis of the behavior of the solution of our
two-patch model in future research, including an expression for the equilibria of
the model and their stability. Perhaps we may analyze another two-patch model
in which the biocontrol is applied to the mature stage and analyze whether this
proves more effective, as it did in the single patch case.

Pest control is an interesting field of study in ecology and agriculture. Our
work provides a specific point of view and set of analyses that can be expanded
or altered depending on the unique needs of other researchers. This could include
the analysis of a pest with more than two stages, accounting more closely for the
example of the spider mite.
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